Subatomic particles



subatomic particle, also called elementary particle, any of various self-contained units of matter or energy that are the fundamental constituents of all matter. Subatomic particles include electrons, the negatively charged, almost massless particles that nevertheless account for most of the size of the atom, and they include the heavier building blocks of the small but very dense nucleus of the atom, the positively charged protons and the electrically neutral neutrons. But these basic atomic components are by no means the only known subatomic particles. Protons and neutrons, for instance, are themselves made up of elementary particles called quarks, and the electron is only one member of a class of elementary particles that also includes the muon and the neutrino. More-unusual subatomic particles—such as the positron, the antimatter counterpart of the electron—have been detected and characterized in cosmic ray interactions in Earth’s atmosphere. The field of subatomic particles has expanded dramatically with the construction of powerful particle accelerators to study high-energy collisions of electrons, protons, and other particles with matter. As particles collide at high energy, the collision energy becomes available for the creation of subatomic particles such as mesons and hyperons. Finally, completing the revolution that began in the early 20th century with theories of the equivalence of matter and energy, the study of subatomic particles has been transformed by the discovery that the actions of forces are due to the exchange of “force” particles such as photons and gluons. More than 200 subatomic particles have been detected—most of them highly unstable, existing for less than a millionth of a second—as a result of collisions produced in cosmic ray reactions or particle accelerator experiments. Theoretical and experimental research in particle physics, the study of subatomic particles and their properties, has given scientists a clearer understanding of the nature of matter and energy and of the origin of the universe.

The current understanding of the state of particle physics is integrated within a conceptual framework known as the Standard Model. The Standard Model provides a classification scheme for all the known subatomic particles based on theoretical descriptions of the basic forces of matter.

Post a Comment

Previous Post Next Post